LIANGCAI PENG, Ph.D.
Distinguished Professor of Biochemistry & Plant Biology,
Director of Biomass & Bioenergy Research Center,
College of Plant Sciences and Technology,
Huazhong Agricultural University,
Wuhan, Hubei, 430070, China.
Contact Information:
No.3 Building Room A510,
College of Plant Sciences and Technology,
Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
Email: lpeng@mail.hzau.edu.cn; pengliangcai2007@sina.com.
Tel: 86-27-87281765, Web: http://bbrc.hzau.edu.cn.
Research Interests:
Plant cellulose biosynthesis; Plant cell wall structure & genomics; Carbon partitioning & carbohydrate metabolism; Bioenergy crop biotechnology; Biomass chemistry & biofuel technology; Heavy metal phytoremediation & biochemical production.
Education:
1997.8: Ph.D. in Biochemistry and Molecular Biology. Research School of Biological
Sciences (RSBS), the Australian National University (ANU), Canberra, Australia.
1987.9: M.Sc. in Plant Biochemistry. The Post-graduate School, Chinese Academy of
Agricultural Sciences (CAAS), Beijing, China.
1983.8: B.Sc.in Agronomy. Department of Agronomy, Huazhong Agricultural University, Wuhan, China.
Research & Teaching Experiences:
2006.1-Present: Professor, selected as National Changjiang Scholar in 2016, Director & Founder of Biomass & Bioenergy Research Center, College of Plant Sciences & Technology, Huazhong Agricultural University.
2000.6-2004.5: Research Geneticist. Plant and yeast responses to oxidative and abiotic stress, and genetic manipulation for plant stress tolerance and gossypol degradation. Plant Gene Expression Center, ARS/USDA, University of California-Berkeley, Albany, CA.
1997.9-2000.5: Postdoctoral Fellow. Plant cellulose biosynthesis. Section of Plant Biology, UCD, CA.
1994.3-1997.9: Post-graduate Student for Ph.D. Dissertation title: Characterization of
cellulose biosynthesis in Arabidopsis thaliana. Plant Cell Biology Group, RSBS, ANU, Canberra, Australia.
1993.2-1994.2: ANU Visiting Research Fellow. Plant defense response to pathogenic
infection. Plant-Microbe Interaction Group, RSBS, ANU, Canberra, Australia.
1992.2-1993.1: IFS Research Fellow. Molecular structure, function and evolution of trypsin inhibitor from closely related plants. Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, ANU, Canberra, Australia.
1987.7-1992.2: Research Fellow. Leader for two research projects: Biochemical analysis and genetic screening of Chinese wild rapeseed, supported by IFS (Sweden); Characterization of plant secondary metabolic substances, supported by National Natural Science Foundation of China (NSFC/China). Institute of Oil Crops, CAAS, Wuhan, China.
1984.9-1987.9: Post-graduate Student for M.Sc. Thesis title: Glucosinolate accumulation and regulation in rapeseed plant. CAAS, Beijing, China.
1983.8-1984.8: Lecturer, full time. Zhongnan Nationality University, Wuhan, China.
Supervision Obligation:
Since 2006, total 16 Ph.D. and 58 M.Sci. students have been graduated and 12 Ph.D. students have been recruited as faculty members in Universities of China and foreign countries. Total 12 Ph. D. and 14 M. Sci students are currently under supervision including 5 overseas students.
Publications:
(*correspondent; # equal contribution)
Representative Articles:
1. Peng, L., Kawagoe, Y., Hogan, P., Delmer, D.* Sitosterol b -1,4-glucoside as primer for cellulose synthesis in plants. Science. 295: 147-150, 2002 (IF: 44.372; Times Cited: 505).
2. Arioli, T., Peng L., Betzner, A. S., Burn, J., Wittke, W., Herth, W., Camilleri, C., Hofte, H., Plazinski, J., Birch, R., Cork, A., Glover, J., Redmond, J., Williamson, R. E.* Molecular analysis of cellulose biosynthesis in Arabidopsis. Science. 279: 717-720, 1998 (IF: 44.372; Times Cited: 1195).
3. Peng, L., Hocart, H., Redmond, W., Williamson, E.* Fractionation of carbohydrates in Arabidopsis seedling cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta. 211: 406-414, 2000 (IF: 3.460; Times Cited: 217).
4. Peng, L., Xiang, F., Roberts, E., Kawagoe, Y., Greve, C., Stoller, A., Kreuz, K., Delmer, D.* The experimental herbicide CGA 325’615 inhibits synthesis of crystalline cellulose and causes accumulation of non-crystalline b-1,4-glucan associated with CesA protein. Plant Physiology. 126: 981-992, 2011 (IF: 7.520; Times Cited: 133).
5. Wang, Y. #, Fan, C.#, Hu, H., Li, Y., Sun, D., Wang, Y., Peng L.* Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnology Advances. 34(5): 997-1017. 2016 (IF: 13.579; Times Cited: 73).
6. Li, Y., Liu, P., Huang, J., Zhang, R., Hu, Z., Feng, S., Wang, Y., Wang, L., Xia, T.,* Peng, L.* Mild chemical pretreatments are sufficient for bioethanol production in the transgenic glucosidase-overproduced rice straw. Green Chemistry. 20: 247, 2018 (IF: 9.707; Times Cited: 25).
7. Li, F. #, Zhang, M. #, Guo, K., Hu, Z., Zhang, R., Feng, Y., Yi, X., Zou, W., Wang, L., Wu, C., Tian, J., Lu, T., Xie, G.*, Peng L.* High-level arabinose predominately affects cellulose crystallinity for genetic enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnology Journal. 13: 514-525, 2015 (IF:8.154, Times Cited: 68).
8. Xu, N., Zhang, W., Ren, S., Liu, F., Zhao, C., Liao, H., Xu, Z., Li, Q., Tu, Y., Yu, B., Wang, Y., Jiang, J., Qin, J., Peng L.* Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnology for Biofuels. 5(1): 58, 2012 (IF: 6.444; Times Cited: 168).
9. Zhang, W., Yi Z., Huang, J., Li, F., Hao, B., Li, M., Hong, S., Lv, Y., Sun, W., Ragauskas, A., Hu, F., Peng, J., Peng L.* Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Bioresource Technology. 130: 30-37, 2013 (IF: 7.539; Times Cited: 79).
10. Jin, W., Chen, L., Hu, M., Sun, D., Li, A., Li, Y., Hu, Z., Zhou, S., Tu, Y., Xia, T., Wang, Y., Xie, G., Li, Y., Bai, B., Peng L.* Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed. Applied Energy. 175: 82-90, 2016 (IF: 9.086; Times Cited: 75).
2020
1. Lv, Z. Liu, F., Zhang, Y., Tu, Y., Chen, P.*, Peng, L.* Ecologically adaptable Populus simonii is specific for recalcitrance-reduced lignocellulose and largely-enhanced enzymatic saccharification among woody plants. Global Change Biology Bioenergy, 2020 (In press, IF: 5.316).
2. Zhang, R., Hu, H., Wang, Y., Hu, Z., Ren, S., Li, J., He, B., Wang, Y., Xia, T., Chen, P., Xie, G., Peng, L.* A novel rice fragile culm 24 mutant encodes a UDP-glucose epimerase that affects cell wall properties and photosynthesis. Journal of Experimental Botany. DOI:10.1093/jxb/eraa044, 2020 (IF: 7.011).
3. Sun, D., Yang, Q., Wang, Y., Gao, H., He, M., Lin, X., Lu, J., Wang, Y., Kang, H., Alam, A., Tu, Y., Xia, T., Peng, L.* Distinct mechanisms of enzymatic saccharification and bioethanol conversion enhancement by three surfactants under steam explosion and mild chemical pretreatments in bioenergy Miscanthus. Industrial Crops and Products. 153: 112559, 2020 (IF: 4.538).
4. Alam, A., Wang, Y., Liu, F., Kang, H., Tang, S., Wang, Y., Cai, Q., Wang, H., Peng, H., Li, Q., Zeng, Y., Tu, Y., Xia, T., Peng, L.* Modeling of optimal green liquor pretreatment for enhanced biomass saccharification and delignification by distinct alteration of wall polymer features and biomass porosity in Miscanthus. Renewable Energy. 159: 1128-1138, 2020 (IF: 6.274).
5. Fan, C., Yu, H., Qin, S., Li, Y., Alam, A., Xu, C., Fan, D., Zhang, Q., Wang, Y., Zhu, W., Peng, L.*, Luo, K.* Brassinosteroid overproduction improves lignocellulose quantity and quality to maximize bioethanol yield under green-like biomass process in transgenic poplar. Biotechnology for Biofuels. 13: 9, 2020 (IF: 6.444).
6. Deng, J., # Zhu, X., # Chen, P., He, B., Tang, S., Zhao, W., Li, X., Zhang, R., Lv, Z., Kang, H., Yu, L.,* Peng, L.* Mechanism of lignocellulose modification and enzyme dis-adsorption for complete biomass saccharification to maximize bioethanol yield in rapeseed stalks. Sustainable Energy & Fuels. 4: 607-618, 2020 (IF: 5.505).
7. Xu, C., Tao, X., Wang, J., Yu, L., Wu, L., Zhang, Y., Liu, P., Chen, P., Feng, S., Peng, L.* Selectively desirable rapeseed and corn stalks distinctive for low-cost bioethanol production and high-active biosorbents. Waste and Biomass Valorization. DOI:10.1007/s12649-020-
01026-0, 2020 (IF: 2.851).
8. Zhang, Y., Xu, C., Lu, J., Yu, H., Zhu, J., Zhou, J., Zhang, X., Liu, F., Wang, Y., Hao, B., Peng, L. Xia, T.* An effective strategy for dual enhancements on bioethanol production and trace metal removal using Miscanthus straws. Industry Crops and Products. 152: 112393, 2020 (IF: 4.538).
9. Yang, Q., Zhao, W., Liu, J., He, B., Wang, Y., Yang, T., Zhang, G., He, M., Lu, J., Peng, L. Wang, Y.* Quantum dots are conventionally applicable for wide-profiling of wall polymer distribution and destruction in diverse cells of rice. Talanta. 208: 120452, 2020 (IF: 5.339).
2019
10. Wu, L.,# Feng, S.,# Deng, J., Yu, B., Wang, Y., He, B., Peng, H., Li, Q., Hu, R.,* Peng, L.* Altered carbon assimilation and cellulose accessibility to maximize bioethanol yield under low-cost biomass processing in corn brittle stalk. Green Chemistry. 21: 4388–4399, 2019 (IF: 9.707; Times Cited: 5).
11. Alam, A., Zhang, R., Liu, P., Huang, J. Wang, Y., Hu, Z., Madadi, M., Sun, D., Hu, R., Ragauskas, A., Tu, Y., Peng, L.* A finalized determinant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy Miscanthus. Biotechnology for Biofuels. 12: 99, 2019 (IF: 6.444; Times Cited: 10).
12. Li, Y., Sun, H., Fan, C., Hu, H., Wu, L., Jin, X., Lv, Z., Wang, Y., Feng, S., Chen, P., Peng, L. * Overproduction of fungus endo-β-1,4-glucanase leads to characteristic lignocellulose modification for largely enhanced biomass enzymatic saccharification and bioethanol production in transgenic rice straws. Cellulose. 26: 8249–8261, 2019 (IF: 4.512; Time Cited: 3).
13. Wu, Y.,# Wang, M.,# Yu, L.,* Tang, S., Xia, T., Kang, H., Xu, C., Gao, H., Madadi, M., Alam, A., Cheng, L., Peng, L. * A mechanism for efficient cadmium phytoremediation and high bioethanol production by combined mild chemical pretreatments with desirable rapeseed stalks. Science of the Total Environment. 708: 135096, 2019 (IF: 6.551).
14. Fan, C., Wang, G., Wang, Y., Zhang, R., Wang, Y., Feng, S., Luo, K., Peng, L.* Sucrose synthase enhances hull size and grain weight by regulating cell division and starch accumulation in transgenic rice. International Journal of Molecular Sciences. 20: 4971, 2019 (IF: 4.653).
15. Hu, H.,# Zhang, R.,# Tang, Y., Peng, C., Wu, L., Feng, S., Chen, P., Wang, Y., Du, X.,* Peng, L.* Cotton CSLD3 restores cell elongation and cell wall integrity mainly by enhancing primary cellulose production in the Arabidopsis cesa6 mutant. Plant Molecular Biology. 101: 389-401, 2019 (IF: 4.529; Times Cited: 1).
16. Cheng, L., Wang, L., Wei, L., Wu, Y., Alam, A., Xu, C., Wang, Y., Tu, Y., Peng, L., Xia, T. * Combined mild chemical pretreatments for complete cadmium release and cellulosic ethanol co-production distinctive in wheat mutant straw. Green Chemistry. 21: 3693-3700, 2019 (IF: 9.707; Times Cited: 8).
17. Fan, C., Wang, G., Wu, L., Liu, P., Huang, J., Jin, X., Zhang, G., He, Y., Peng, L., Luo, K., Feng, S.* Distinct cellulose and callose accumulation for enhanced bioethanol production and biotic stress resistance in OsSUS3 transgenic rice. Carbohydrate Polymers. 232: 115448, 2019 (IF: 7.182; Times cited: 3).
18. Liu, C., Xiao, Y., Xia, X., Zhao, X., Peng, L., Srinophakun, P., Bai, F. * Cellulosic ethanol production: Progress, challenges and strategies for solutions. Biotechnology Advances. 14(1): 650-688, 2019 (IF: 13.597; Time Cited: 23).
19. Li, Q., Xie, B., Wang, Y. *, Wang, Y.*, Peng, L., Li, Y., Li, B., Liu, S. * Cellulose nanofibrils from Miscanthus floridulus straw as green particle emulsifier for O/W Pickering emulsion. Food Hydrocolloids. 97: 105214, 2019 (IF: 7.077; Times Cited: 3).
20. Huang, J., Xia, T., Li, G., Li, X., Li, Y., Wang, Y., Wang, Y., Chen, Y., Xie, G., Bai, F., Peng, L., Wang, L.* Overproduction of native endo β 1,4 glucanases leads to largely enhanced biomass saccharification and bioethanol production by specific modification of cellulose features in transgenic rice. Biotechnology for Biofuels. 12: 114, 2019 (IF: 6.444; Times Cited: 11).
21. Guo, X., Liu, Y., Zhang, R., Luo, J., Song, Y., li, J., Wu, K., Peng, L., Liu, Y., Du, Y., Liang, Y., Li, T.* Hemicellulose modification promotes cadmium hyperaccumulation by decreasing its retention on roots in Sedum alfredii. Plant Soil. 447: 1-15, 2019 (IF: 3.880).
22. Li, A., Yang, Q., Li, Y., Zhou, S., Huang, J., Hu, M., Tu, Y., Hao, B., Peng, L., Xia, T. * Mild physical and chemical pretreatments to enhance biomass enzymatic saccharification and bioethanol production form Erianthus arundinaceus. BioResources. 14(1): 650-688, 2019 (IF: 1.520).
2018
23. Li, Y., Liu, P., Huang, J., Zhang, R., Hu, Z., Feng, S., Wang, Y., Wang, L., Xia, T.,* Peng, L.* Mild chemical pretreatments are sufficient for bioethanol production in the transgenic rice straws overproducing glucosidase. Green Chemistry. 20: 247, 2018 (IF: 9.707; Times Cited: 25).
24. Hu, H., Zhang. R., Feng, S., Wang, Y., Wang, Y., Fan, C., Li, Y., Liu, Z., Schneider, R., Xia, T., Ding, S., Persson, S., Peng, L.* Three AtCesA6-like members enhance biomass production by promoting cell growth and secondary wall thickenings in Arabidopsis. Plant Biotechnology Journal. 16: 976-988, 2018 (IF: 8.154; Times cited: 11).
25. Hu, H., Zhang, R., Dong, S., Li, Y., Fan, C., Wang, Y., Xia, T., Chen, P., Feng, S., Persson, S., Peng, L.* AtCSLD3 and GhCSLD3 mediate root growth and cell elongation downstream of the ethylene response pathway in Arabidopsis. Journal of Experimental Botany. 69(5): 1065-1080, 2018 (IF: 7.011; Times cited: 5).
26. Cheng, S.#, Yu, H.#, Hu, M., Wu, Y., Cheng, L., Cai, Q., Tu, T., Xia, T., Peng, L.* Miscanthus accessions distinctively accumulate cadmium for largely enhanced biomass enzymatic saccharification by increasing hemicellulose and pectin and reducing cellulose CrI and DP. Bioresource Technology. 263: 67-74, 2018 (IF: 7.539; Times Cited: 14).
27. Hu, H., Zhang. R., Tao, Z., Li, X., Li, Y., Huang, J., Li, X., Han, X., Feng, S., Zhang, G., Peng, L.* Cellulose synthase mutants distinctively affect cell growth and cell wall integrity for plant biomass production in Arabidopsis. Plant and Cell Physiology. 59(6): 1144-1157, 2018 (IF: 4.978; Times Cited: 8).
28. Jin, X., Lv, Z., Gao, J., Zhang, R., Zheng, T., Yin, P., Li, D., Peng, L., Cao, X., Qin Y., Persson, S., Zheng, B., Chen, P.* AtTrm5a catalyses 1-methylguanosine and 1-methylinosine formation on tRNAs and is important for vegetative and reproductive growth in Arabidopsis thalian. Nucleic Acids Research. 47(2): 883-898, 2018 (IF: 11.797; Times Cited: 4).
29. Fan, C., Li, Y., Hu, Z., Hu, H., Wang, G., Li, A., Wang, Y., Tu, Y., Xia, T., Peng, L., Feng, S.* Ectopic expression of a novel OsExtensin-like gene consistently enhances plant lodging resistance by regulating cell elongation and cell wall thickening in rice. Plant Biotechnology Journal. 16: 254-263, 2018 (IF: 8.154; Times cited: 24).
30. Li, Y. #, Zhuo, J. #, Liu, P., Chen, P., Hu, H., Wang, Y., Zhou, S., Tu, Y., Peng, L., Wang, Y.* Distinct wall polymer deconstruction for high biomass digestibility under chemical pretreatment in Miscanthus and rice. Carbohydrate Polymers. 192: 273-281, 2018 (IF: 7.182; Times Cited: 8).
31. Hu, M. #, Yu, H. #, Li, Y., Li, A., Cai, Q., Liu, P., Tu, Y., Wang, Y., Hu, R., Hao, B., Peng, L. Xia, T.* Distinct polymer extraction and cellulose DP reduction for complete cellulose hydrolysis under mild chemical pretreatments in sugarcane. Carbohydrate Polymers. 202: 434-443, 2018 (IF: 7.182; Times Cited:9).
32. Hu, Z., Zhang, G.., Muhammad, A., Samad, R., Wang, Y., Walton, J., He, Y., Peng L., Wang, L*. Genetic loci simultaneously controlling lignin monomers and biomass digestibility of rice straw. Scientific Reports. 8: 3636, 2018 (IF: 5.578; Times cited: 3).
33. Li, Y., Zhang, X., Zhang, F., Peng L., Zhang, D., Kondo A., Bai, F., Zhao, X*. Optimization of cellulolytic enzyme components through engineering Trichoderma reesei and on-site fermentation using the soluble inducer for cellulosic ethanol production from corn stover. Biotechnology for Biofuels. 11: 49, 2018 (IF: 6.444; Times Cited: 7).
34. Hu, Z., Zhang, G., Chen, Y., Wang, Y., He, Y., Peng, L., Wang, L*. Determination of lignin monomer contents in rice straw using visible and near-infrared reflectance spectroscopy. Bioresources. 13(2): 3284-3299, 2018 (IF: 1.520).
2017
35. Li, F.#, Xie, G.#, Huang, J., Zhang, R., Li, Y., Zhang, M., Wang, Y., Li, A., Li, X., Xia ,T., Qu, C., Hu, F., Ragauskas, A., Peng, L.* OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. Plant Biotechnology Journal. 15: 1093-1104, 2017 (IF: 8.154; Times cited: 22).
36. Fan, C., Feng, S., Huang, J., Wang, Y., Wu, L., Li, X., Wang, L., Xia, T., Li, J., Cai, X., Peng, L. * AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass saccharifcation and lodging resistance by distinctively altering lignocellulose features in rice. Biotechnology for Biofuels. 10: 221, 2017 (IF: 8.154; Times cited: 24).
37. Huang, J., Li, Y., Wang, Y., Chen, Y., Liu, M., Wang, Y., Zhang, R., Zhou, S., Li, J., Tu, Y., Hao, B., Peng, L., Xia, T.* A precise and consistent assay for major wall polymer features that distinctively determine biomass saccharifcation in transgenic rice by near-infrared spectroscopy. Biotechnology for Biofuels. 10: 294, 2017 (IF: 6.444; Times Cited: 7).
38. Zahoor, Sun, D., Li, Y., Wang, J., Tu, Y., Wang, Y., Hu, Z., Zhou, S., Wang, L., Xie, G., Huang, J., Alam, A., Peng, L.* Biomass saccharification is largely enhanced by altering wall polymer features and reducing silicon accumulation in rice cultivars harvested from nitrogen fertilizer supply. Bioresource Technology. 243: 957-965, 2017 (IF: 7.539; Times cited: 10).
39. Zahoor, Tu, Y., Wang, L., Xia, T., Sun, D., Zhou, S., Wang, Y., Li, Y., Zhang, H., Zhang, T., Madadi M., Peng L.* Mild chemical pretreatments are sufficient for complete saccharification of steam-exploded residues and high ethanol production in desirable wheat accessions. Bioresource Technology. 243: 319–326, 2017 (IF: 7.539; Times cited: 25).
40. Sun, D., Alam, A., Tu, Y., Zhou, S., Wang, Y., Xia, T., Huang, J., Li, Y., Zahoor, Wei, Y., Hao, B., Peng, L.* Steam-exploded biomass saccharification is predominately affected by lignocellulose porosity and largely enhanced by Tween-80 in Miscanthus. Bioresource Technology. 239: 74–81, 2017 (IF: 7.539; Times cited: 27).
41. Li, X., Guo, K., Zhu, X., Chen, P., Li, Y., Xie, G., Wang, L., Wang, Y., Persson, S.*, Peng, L.* Domestication of rice has reduced the occurrence of transposable elements within gene coding regions. BMC Genomics. 18: 55, 2017 (IF: 4.397; Times cited: 7).
42. Hu, S., Wu, L., Persson, S., Peng L., Feng, S.* Sweet Sorghum and Miscanthus: Two potential dedicated Bioenergy Crops in China. Journal of Integrative Agriculture. 16(6): 1236-1243, 2017 (IF: 1.948; Times Cited: 5).
2016
43. Wang, Y. #, Fan, C.#, Hu, H., Li, Y., Sun, D., Wang, Y., Peng L.* Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnology Advances, 34(5): 997-1017, 2016 (IF: 13.597; Times Cited: 73).
44. Jin, W., Chen, L., Hu, M., Sun, D., Li, A., Li, Y., Hu, Z., Zhou, S., Tu, Y., Xia, T., Wang, Y., Xie, G., Li, Y., Bai, B., Peng L.* Tween-80 is effective for enhancing steam-exploded biomass enzymatic saccharification and ethanol production by specifically lessening cellulase absorption with lignin in common reed. Applied Energy. 175: 82-90, 2016 (IF: 9.086; Times Cited: 75).
45. Li, A., Wang, R., Li, X., Liu, M., Fan, J., Guo, K., Luo, B., Chen, T., Feng, S., Wang, Y., Wang, B., Peng L., Xia, T.* Proteomic profiling of cellulase-aid-extracted membrane proteins for functional identi cation of cellulose synthase complexes and their potential associated- components in cotton bers. Scientific Reports. 6: 26356, 2016 (IF: 5.578, Times Cited: 5).
46. Li, X., Liao, H., Fan, C., Hu, H., Li, Y., Li, J., Yi, Z., Cai, X., Peng, L., Tu, Y.* Distinct geographical distribution of the Miscanthus accessions with varied biomass enzymatic saccharification. PLoS ONE. 11(8): e0160026, 2016 (IF: 4.411; Times cited: 147).
47. Pei, Y., Li, Y., Zhang, Y., Yu, C., Fu, T., Zou, J., Tu, Y., Peng L., Chen, P.* G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed. Bioresource Technology, 203: 325-333, 2016 (IF: 7.539, Times Cited: 25).
48. Zhang, M., Wei, F., Guo, K., Hu, Z., Li, Y., Xie, G., Wang, Y., Cai, X., Peng, L., Wang, L.*. A novel FC116/BC10 mutation distinctively causes alteration in the expression of the genes for cell wall polymer synthesis in rice. Frontiers in Plant Science. 7: 1366, 2016 (IF: 5.207; Times cited: 7).
49. Dong, S., Hu, H., Wang, Y., Xu, Z., Zha, Y., Cai., X., Peng L., Feng, S.*. An Atpqr2 mutant encodes a defective polyamine transporter and is negatively affected by ABA for paraquat resistance in Arabidopsis thaliana. Journal of Plant Research. 129(5): 899-907, 2016 (IF: 2.507; Times Cited: 2).
50. Wei, X., Zhou, S., Huang, Y., Huang, J., Chen, P., Wang, Y., Zhang, X., Tu, Y., Peng L., Xia, T.* Three fiber crops show distinctive biomass saccharification under physical and chemical pretreatments by altered wall polymer features. Bioresources. 11(1): 2124-37, 2016 (IF: 1.520; Times Cited: 6).
2015
51. Li, F. #, Zhang, M. #, Guo, K., Hu, Z., Zhang, R., Feng, Y., Yi, X., Zou, W., Wang, L., Wu, C., Tian, J., Lu, T., Xie, G.*, Peng L.* High-level arabinose predominately affects cellulose crystallinity for genetic enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnology Journal. 13: 514-525, 2015 (IF: 8.154, Times Cited: 68).
52. Wang, Y.#, Huang, J.#, Li, Y., Xiong, K., Wang, Y., Li, F., Liu, M., Wu, Z., Tu, Y., Peng L.* Ammonium oxalate-extractable uronic acids positively affect biomass enzymatic digestibility by reducing lignocellulose crystallinity in Miscanthus. Bioresource Technology. 196: 391-398, 2015 (IF: 7.539, Times Cited: 14).
53. Zhang, J.#, Zou, W.#, Li, Y., Feng, Y., Zhang, H., Wu, Z., Tu, Y., Wang, Y., Cai, X., Peng L.* Silica distinctively affects cell wall features and lignocellulosic saccharification with large enhancement on biomass production in rice. Plant Science. 239: 84-91, 2015 (IF: 4.523, Times Cited: 15).
54. Sun, H., Guo, K., Feng, Q., Zou, W., Li, Y., Fan, C., Peng L.* Positive selection drives adaptive diversification of the 4-coumarate: CoA ligase (4CL) gene in angiosperms. Ecology and Evolution. 5(16): 3413-3420, 2015 (IF: 2.749, Times Cited: 4).
55. Si, S.#, Chen, Y.#, Fan, C., Hu, H., Li, Y., Huang, J., Liao, H., Hao, B., Li, Q., Peng L., Tu, Y.*, Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Bioresource Technology. 183: 248-254, 2015 (IF: 7.539; Times Cited: 62).
56. Huang, Y. #, Wei, X. #, Zhou, S., Liu, M., Tu, Y., Li, A., Chen, P., Wang, Y., Zhang, X., Peng L., Xia, T.* Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum. Bioresource Technology. 181: 224-230, 2015 (IF: 7.539, Times Cited: 58).
57. Wu, L., Li, M., Huang, J., Zhang, H., Zou, W., Hu, S., Li, Y., Fan, C., Zhang, R., Jing, H., Peng L., Feng, S.* A near infrared spectroscopic assay for stalk soluble sugars, bagasse enzymatic saccharification and wall polymers in sweet sorghum. Bioresource Technology. 177: 118-124, 2015 (IF: 7.539, Times Cited: 16).
2014
58. Li, M. #, Si, S. #, Hao, B., Zha, Y., Wan, C., Hong, S., Kang, Y., Jia, J., Zhang, J., Li, M., Zhao, C., Tu, Y., Zhou, S., Peng L.* Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus. Bioresource Technology. 169: 447-454, 2014 (IF: 7.539, Times Cited: 58).
59. Li, M. #, Feng, S. #, Wu, Z., Li, Y., Fan, C., Zhang, R., Zou, W., Tu, Y., Jing, H., Li, S., Peng L.* Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse. Bioresource Technology. 167: 14-23, 2014 (IF: 7.539, Times Cited: 46).
60. Guo, K., Zou, W., Feng, Y., Zhang, M., Zhang, J., Tu, F., Xie, G., Wang, L., Wang, Y., Klie, S., Persson, S., Peng L.* An integrated genomic and metabolomic frame work for cell wall biology in rice. BMC Genomics. 15: 596, 2014 (IF: 4.397, Times Cited: 18).
61. Jia, J. #, Yu, B. #, Wu, L., Wang, H., Wu, Z., Li, M., Huang, P., Feng, S., Chen, P., Zheng, Y., Peng L.* Biomass enzymatic saccharification is determined by the non-KOH-extractable wall polymer features that predominately affect cellulose crystallinity in Corn. PLoS ONE. 9(9): e108449, 2014 (IF: 4.411, Times Cited: 22).
62. Li, X., Xia, T.*, Huang, J., Guo, K., Liu, X., Chen, T., Xu, W., Wang, X., Feng, S., Peng L.* Distinct biochemical activities and heat shock responses of two UDP-glucose sterol glucosyltransferases in cotton. Plant Science. 219-220: 1-8, 2014 (IF: 4.253, Times Cited: 8).
63. Li, Z. #, Zhao, C. #, Zha, Y., Wan, W., Si, S., Liu, F., Zhang, R., Li, F., Yu, B., Yi, Z., Xu, N., Peng L., Li, Q.* The minor wall-networks between monolignols and interlinked-phenolics predominantly affect biomass enzymatic digestibility in Miscanthus. PLoS ONE. 9(8): e105115, 2014 (IF: 4.411, Times Cited: 18).
64. Wu, Z., Hao, H., Zahoor, Tu, Y., Hu, Z., Wei, F., Liu, Y., Zhou, X., Wang, Y., Xie, G., Gao, C., Cai, C., Peng L., Wang, L.* Diverse cell wall composition and varied biomass digestibility in wheat straw for bioenergy feedstock. Biomass and Bioenergy. 70: 347-355, 2014 (IF: 4.038, Times Cited: 19).
2013
65. Wu, Z. #, Zhang, M. #, Wang, L.*, Tu, Y., Zhang, J., Xie, G., Zou, W., Li, F., Guo, K., Li, Q., Gao, C., Peng L.* Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants. Biotechnology for Biofuels. 6: 183, 2013 (IF: 6.444; Times Cited: 71).
66. Li, A., Xia T., Xu W., Chen, T., Li X., Fan, J., Wang, R., Feng, S., Wang, Y., Wang, B., Peng L.* An integrative and comparative analysis of four CESA isoforms specific for fiber cellulose production between Gossypium hirsutum and Gossypium barbadense. Planta. 237(6): 1585-1597, 2013 (IF: 3.687; Times Cited: 41).
67. Xie, G., Yang, B., Xu, Z., Li, F., Guo, K., Zhang, M., Wang, L., Zou, W., Wang, Y., Peng L.* Global identification of multiple OsGH9 family members and their involvement in cellulose rystallinity modification in rice. PLoS ONE. 8(1): e50171, 2013 (IF: 4.411; Times Cited: 41).
68. Zhang, W., Yi Z., Huang, J., Li, F., Hao, B., Li, M., Hong, S., Lv, Y., Sun, W., Ragauskas, A., Hu, F., Peng, J., Peng L.* Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Bioresource Technology. 130: 30-37, 2013 (IF: 7.539; Times Cited: 79).
69. Li, F., Ren, S., Zhang, W., Xu, Z., Xie, G., Chen, Y., Tu, Y., Li, Q., Zhou, S., Li, Y., Tu, F., Liu, L., Wang, Y., Jiang, J., Qin, J., Li, S., Li, Q., Jing, H., Zhou, F., Gutterson, N., Peng L.* Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus. Bioresource Technology. 130: 629-637, 2013 (IF: 7.539; Times Cited: 77).
70. Sun, H., Li, Y., Feng, S., Zou, W., Guo, K., Fan, C., Si, S., Peng L.* Analysis of five rice 4-coumarate: coenzyme a ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice. Biochemical and Biophysical Research Communications. 430(3): 1151-6, 2012 (IF: 3.161; Times Cited: 56).
2012 and before
71. Xu, N., Zhang, W., Ren, S., Liu, F., Zhao, C., Liao, H., Xu, Z., Li, Q., Tu, Y., Yu, B., Wang, Y., Jiang, J., Qin, J., Peng L.* Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnology for Biofuels. 5(1): 58, 2012 (IF: 6.444; Times Cited: 168).
72. Huang, J., Xia, T., Li, A., Yu, B., Li, Q., Tu, Y., Zhang, W., Yi, Z., Peng L.* A rapid and consistent near infrared spectroscopic assay for biomass enzymatic digestibility upon various physical and chemical pretreatments in Miscanthus. Bioresource Technology. 121: 274-281, 2012 (IF: 7.539; Times Cited: 60).
73. Xie, G., Peng L.* Genetic engineering of energy crops: A strategy for biofuel production in China. Journal of Integrative Plant Biology. 53:143-150, 2011 (IF: 4.885; Times Cited: 68).
74. Peng L.*. Gutterson, N. Energy crop and biotechnology for biofuel production- meeting report. Journal of Integrative Plant Biology. 53: 89-92, 2011 (IF: 4.885; Times Cited: 8).
75. Wang, L., Guo, K., Li, Y., Tu, Y., Hu, H., Wang, B., Cui, X., Peng L.* Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biology. 10:282-298, 2010 (IF: 4.494; Times Cited: 156).
76. Peng, L., Xiang, F., Roberts, 2E., Kawagoe, Y., Greve, C., Stoller, A., Kreuz, K., Delmer, D.* The experimental herbicide CGA 325’615 inhibits synthesis of crystalline cellulose and causes accumulation of non-crystalline b-1,4-glucan associated with CesA protein. Plant Physiology. 126: 981-992, 2001 (IF: 7.520; Times Cited: 133).
77. Lane, D., Wiedemeier, A., Peng, L., Hofte, H., Hocart, H., Birch, R., Baskin, T., Arioli, T., Burn, J., Betzner, A., Williamson R. E.* Temperature-sensitive alleles of rsw2 link the KORRIGAN endo-b-1,4-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. Plant Physiology. 126: 278-288, 2001 (IF: 7.520; Times Cited: 443).
78. Peng, L., Hocart, C. H., Redmond, J.W., Williamson, R. E.* Fractionation of carbohydrates in Arabidopsis seedling cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta. 211: 406-414, 2000 (IF: 3.687; Times Cited: 275).
Chinese Articles:
1. Si, S., Li, M., Jia, J., Li, Q., Hao, B., Wang, Y., Peng, L., Tu, Y.* Effects of Byproducts obtained from alkali or acid pretreatment of Miscanthus biomass on yeast fermentation. Biomass Chemical Engineering, 50(3): 41-45, 2016 (in Chinese).
2. Dong, S., Hu, H., Peng, L., Feng, S*. Research progress on plant resistance to paraquat. Plant Physiology Journal, 2015, 51(9): 1373-1380, 2015 (in Chinese).
3. Yi, X., Li, F., Guo, K., Zhang, R., Li, X., Wang, Y., Peng, L., Xie, G.* Bioinformatics and expression analysis of OsGT61 family genes involved in hemicellulose side chain biosynthesis in rice. Journal of China Agricultural University, (20)2: 19-28, 2015 (in Chinese).
4. Zhang, H., Zou, W., Zhang, Y., Zhang, R., Feng, S., Tu, Y., Jing, H., Peng, L.* Identification of sweet sorghum mutants for rich soluble sugars and high biomass enzymatic digestibility. Journal of Huazhong Agricultural University, 34(5): 1-6, 2015 (in Chinese).
5. Wang, Y., Xu, Z., Peng, L.* Research Progress on the Groove Structures of Plant Cell Walls and Biomass Utilizations. Scientia Sinica Vitae, 44(8): 766-774, 2014 (in Chinese).
6. Han, X., Guo, K., Li, X., Wang, B., Xia, T., Peng, L., Feng, S.* Expression Profiling and functional prediction of Arabidopsis AtCESA genes culm mutants and their biomass degradation efficiency. Chinese Bulletin of Botany, 49(5): 539-547, 2014 (in Chinese).
7. Li, X., Peng, L., Wang, L*. pep_Pattern.pl, a Perl script for searching motifs in a group of related DNA/protein sequence. Journal of Huazhong Agricultural University, 1-5, 2014 (in Chinese).
8. Feng, Y., Zou, W., Li, F., Zhang, J., Zhang H., Xie, G., Tu, Y., Lu, T., Peng, L.* Studies on biological characterization of rice brittle. Journal of Agricultural Science and Technology, 15(3): 77-83, 2013 (in Chinese).
9. Li, X., Li, A., Peng, L., Xia, T.* Characterization of the cellulose synthase complex in cotton. Cotton Science, 25(2): 129-134, 2013 (in Chinese).
10. Li, X., G, K., Peng, L., Wang, L.* Choose Materials. Pl, a perl script for picking out the samples by controlling variable. Chinese Journal of Bioinformatics, 11(3): 186-191, 2013 (in Chinese).
11. Liu, L., Yu, B., Huang, P., Jia, J., Zhao, H., Peng, J., Chen, P., Peng, L.* Frequency of callus induction and plant regeneration among eight genotypes in Miscanthus sinensis species. Chinese Bulletin of Botany, 48(2): 192-198, 2013 (in Chinese).
12. Chen, T., Li, X., Wang, R., Peng, L., Xia, T.* Cloning and expression analysis of GhPME1 and GhPME2 in cotton. Journal of China Agricultural University, 17(5):7-14, 2012 (in Chinese).
13. Tao, Z., Xu, W., Zhang, M., Peng, L., Feng, S.* Preparation of detection of antibodies of cellulose synthase (CESA) in Arabidopsis. Journal of Huazhong Agricultural University, 31(2): 171-177, 2011 (in Chinese).
14. Fan, J., Liu, X., Fan, C., Huang, J., Luo, B., Peng, L., Xia, T.* Antibody preparation of proteins involved in celluloses biosynthesis in cotton fibers. Cotton Science, 24(2): 106-113, 2012 (in Chinese).
15. Zhang, M., Tao, Z., Chen, T., Xia, T., Peng, L., Feng, S.* Preparation and identification of polyclonal antibodies of cellulose synthase in rice. Journal of Huazhong Agricultural University, 30(4): 393-397, 2011 (in Chinese).
16. Xu, W., Deng, Z., Chen, T., Peng, L., Xia, T.* RNA isolation and yeast two hybrid library construction of cotton fibers. Chinese Agricultural Science Bulletin, 28(30): 177-183, 2011 (in Chinese).
17. Peng, L.* Fundamental solution for biofuel production in China. Journal of Huazhong Agricultural University, (2): 1-6, 2011 (in Chinese).
18. Peng, L., Wu, X., and Xu, R.* Improvement and application of analytical method for total glucosinolates contents in rapeseed. Journal of China Oil Crops, 1: 38-41, 1989 (in Chinese).
Book Chapters:
1. Chen, P., and Peng, L*. The diversity of lignocellulosic biomass resources and their evaluations for use as biofuels and chemicals. In: Sun J Z, Ding S Y, Peterson J D, eds. Biological Conversion of Biomass for Fuels and Chemicals: Explorations from Natural Biomass Utilization Systems. Royal Society of Chemistry, 2013, 83-109. ISBN: 978-1-84973-424-0.
2. Xie, G., and Peng, L*.Book Chapter entitled “Genetic Engineering of Bioenergy Crops.” In: Wang L J, ed. Sustainable Bioenergy Production. Taylor and Francis. 2014.
Patents:
1. Arioli, T., Williamson, R. E., Betzner, A. S., and Peng, L. Manipulation of cellulose and/or beta–1, 4-glucan. International Patent Application No. PCT/AU97/ 00402, ANU and CSIRO, Australia.
2. Peng, L.,* Feng, S., Xie, G., Wang, L., Wang, Y., Li, Y., Fan, C., Sun, H., Hu, H. Manipulation of the transgenic rice plant that expressed exo-beat-1,4-gluconase gene for high biomass enzymatic digestibility. Application No.2016110794764, 2016.11.30.
3. Peng, L.,* Hao, B., Xia, T., Tu, Y., Wang, Y., Tu, F., Xiong, K., Wei, X. Manipulation of yeast strain (SF4) that used xylose for ethanol production. Application No.2016110197161, 2016.11.21.
4. Peng, L.,* Xia, T., Tu, Y., Jin, W., Chen, L. A technology for high ethanol production using reed biomass residues. Application No.2016106308354, 2016.08.04.
5. Peng, L.,* Feng, S., Fan, C., Tu, Y., Wang, Y. Manipulation of transgenic rice plant that expressed sucrose synthase for high resistance to blight disease. Application No.201710034179.6, 2017.01.18.
6. Peng, L.,* Fan, C., Feng, S., Xia, T., Xie, G. Manipulation of transgenic rice plant that expressed sucrose synthase for high resistance to blast disease. Application No.201710033942.3, 2017.01.18.
7. Peng, L.,* Feng, S., Fan, C., Li, Y., Tu, Y., Chen, C. Manipulation of transgenic rice plant that expressed sucrose synthase for high lodging resistance. Application No.201710034026.1, 2017.01.18.
8. Peng, L.,* Fan, C., Feng, S., Li, Y., Xia, T., Wang, L. Manipulation of transgenic rice plant that expressed extensin-like gene for high lodging resistance. Application No.201710034163.5, 2017.01.18.
Invited Seminars:
1. Peng, L. (2018). A native Achilles-heel-like breakpoint of cellulose microfibrils for effective biomass enzymatic saccharification. 1st Plant Cell Wall & Modern Forestry International Symposium, Hangzhou, China.
2. Peng, L. (2018). A key technology for high cellulosic bioethanol production in the desirable biomass. IEA Bioenergy Task 39 Workshop on Liquid Biofuel and the third Annual Meeting of C-CJCBERI, Beijing, China.
3. Peng, L. (2018). Explore the key technology for cellulosic ethanol production, Seminars for 20 Years Anniversary of National Changjiang Scholar, Beijing, China.
4. Peng, L. (2018). Characterization of lignocellulose structure for biomass enzymatic saccharification. 2018 Symposium on Cutting Edges of Life Science, Inner Mongolia, China.
5. Peng, L. (2018). Plant cell wall structure and biofuel production. 2018 Chongqing Botany Meeting, Chongqing, China.
6. Peng, L. (2018). A native Achilles-heel-like breakpoint for optimal lignocellose process technology to maximize bioethanol production in bioenergy crops 2018. ICBE, Wuhan, China.
7. Peng, L. (2018). What is breakthrough technology for cellulosic ethanol production, 2018 China Bioenergy Conference, Wuhan, China.
8. Peng, L. (2018). Integrated biotechnology from cellulose biosynthesis to lignocellulose saccharification for bioethanol production. The 2nd International Symposium on Zymomonas mobilis: Metabolic Engineering and Synthetic Biology, INSZMO-2018, Wuhan, China.
9. Peng, L. (2017). Sucrose synthase distinctively regulates cellulose and callose biosynthesis for improving agronomic traits and activating innate immunity in rice. The 6th International Conference on Plant Cell Wall Biology, Beijing, China.
10. Peng, L. (2017). Progress of cellulosic ethanol technology. Symposium on Biofuels Technology. Beijing, China.
11. Peng, L. (2016). CESAs and cellulose biosynthesis for biomass quantity and quality. XIV Cell Wall Meeting, Crete, Greece.
12. Peng, L. (2016). Plant cell wall modification for enhancing biomass yield and biofuel production in bioenergy crops, International Conference of Crop Sciences, Beijing, china
13. Peng, L. (2016). Metabolic modification of lignocellulose biomass for biorefinery, International Conference on Metabolic Science, Nanjiao, Shanghai, China.
14. Peng, L. (2015). Exploring the fundamental cell wall structure: a key for high biomass production & biofuel applications, International Cereals, Biomass and Biofuels Workshop, Beijing, China.
15. Peng, L. (2014). Exploring the ditches: structure of plant cell walls for plant biology and biomass production. 5th International Conference on Plant Cell Wall Biology, PCWB2014, Queensland, Australia.
16. Peng, L. (2014). A lignocellulose structure model for high biomass enzymatic digestibility and effective ethanol fermentation in grass plants, AFOB Bioenergy and Biorefinery Meeting & Bioenergy and Biorefinery Summit 2014, Jinan, China.
17. Peng, L. (2014). Genetic modification of bioenergy crops, a key towards biofuels industrialization, Yangling International Agri-science Forum, Yangling, China.
18. Peng, L. (2014). Exploring the fundamental cell wall structure for biofuel production. Chinese Plant Physiology Society Conference, Guiyang, China.
19. Peng, L. (2013). Systematic analysis of plant cell wall structures towards a fundamental model on biomass production and application in crops. Plant Genomics in China XIV, Nanjing, China.
20. Peng, L. (2012). Genetic modification of plant cell walls in bioenergy crops. 10th International Congress on Plant Molecular Biology, Jeju, Korea.
21. Peng, L. (2012). HZAU bioenergy research progress and perspective. The Third International Symposium on Bioenergy and Biotechnology, Wuhan, China.
22. Peng, L. (2012). Research progress of feedstock in China. Sino-US Symposium on Advanced Biofuels, Beijing, China.
23. Peng, L. (2012). A fundamental structure of plant cell walls reveals the crucial solution for lignocellulosic biofules in grasses. 2012 Low Carbon Forum, Shenzhen, China.
24. Peng, L. (2011). Distinctive cell wall composition of Miscanthus determines biomass digestibility and ethanol fermentation. 2011 Cell Wall Biosynthesis Conference, Awaji, Japan.
25. Peng, L. (2011). Fundamental solution for biofuel production in China. 2011 Low Carbon Forum, Shenzhen, China.
26. Peng, L. (2010). HZAU bioenergy research progress and perspective. HZAU bioenergy research progress and perspective. The Second International Symposium on Bioenergy and Biotechnology in Conjunction with Miscanthus Workshop, Wuhan, China.
27. Peng, L. (2010). Identification of plant cell wall regulatory network for energy crop selection. Environment and Energy Conference, Shenzhen, China.
28. Peng, L. (2010). A way for developing biofuels in China. China-U.S Bioenergy Forum, Beijing, China.
29. Peng, L. (2009). Energy bioscience and energy crop selection: a way for developing biofuels in China. Sino-Singapore Bioenergy Plants Workshop 2009, Beijing, China.
30. Peng, L. (2008). Strategy for developing cellulose-ethanol in China. APEC Biofuels Summit 2008, Qingdao, China.
31. Peng, L. (2008). Optimum conditions and crucial factors for cellulose synthesis in vitro. Third Conference on the Biosynthesis of Plant Cell Walls, San Francisco, USA.
32. Peng, L. (2008). Dissection of cellulose biosynthesis process for potential genetic manipulation of bioenergy plants. International Symposium on Bioenergy and Biotechnology, Wuhan, China.
33. Peng, L. (2008). Biomass research and bioenergy plants. The 108th Pro-seminar of the Eastern Forum of Science and Technology, Shanghai, China.
34. Peng, L., Wang, B., Xia, T. (2007). Plant cellulose biosynthesis and its application in bioenergy. Chinese Plant Physiology Society Conference, Hebei, China.
35. Peng, L., Wang, B., Xia, T., Wang, L. (2007). Plant cell wall functional genomics and genetic manipulation for bioenergy crops. Chinese Genetic Society Conference, Zhejing, China.
36. Large, M., Peng, L., Yamaguchi, T., Yeager, M., Blumwald, E. (2006). Structure/ function analyses of the Arabidopsis vacuolar Na+/H+ antiporters. The 2006 ASPB Conference, Boston, USA.
37. Peng, L., Sen, W., and Ow, D. (2002). Expression of fission yeast genes in plants for enhanced metal and oxidative stress. The 2002 ASPB Conference, Denver, USA.
38. Peng, L., Delmer, D., Stoller, A., and Kreuz, K. (2000). Specific inhibitors provide insight into the mechanism of cellulose synthesis in cotton fibers. The 2000 ASPP Conference, California, USA.
39. Peng, L., Delmer, D., Stoller, A., and Kreuz, K. (1998). A comparison of the effects of two different herbicides on cellulose synthesis in cotton fibers. Plant Polysaccharides Symposium-UCD (abstr. P-27), Davis, CA, USA。 .
40. Williamson, R., Peng, L., Rolfe, B., and Redmond, J. (1995). Radial swelling mutants of Arabidopsis which are deficient in cellulose synthesis. J. Immunol. Cell Biol., 73: A9.
41. Lane, D., Arioli, T., Betzner, A., Peng, L., and Williamson, R. (1995). Radial swelling mutants deficient in cellulose biosynthesis. 35th Annual General Meeting of Australian Society of Plant Physiology, (abstr.), Canberra, Australia.
42. Peng, L., and Wu, X. (1992). The anther culture of interspecific hybrid between Brassica napus and Chinese wild rapeseed. The 2nd Biotechnological Conference of Hubei, January, 99-101, Wuhan, China.
43. Peng, L., and Chen, H. (1991). The variation of polyphenolics contents and composition in the process of seed formation and development of rapeseed. Chinese Crops Sci. Conference, May, 234, Beijing, China.
44. Peng, L. (1990). A chemical analysis of rapeseed quality in China. Asia-Pacific Regional Seminar on Analysis of Trace Constituents in Foods, November, 42, Malaysia.
45. Peng, L., Xu, R., and Wu, X. (1989). Studies on accumulation and regulation of glucosinolates in rapeseed. The 2nd Chinese Agri. Biochem. Conference, October, 1989, 138-140, Hangzhou, China.
46. Peng, L. (1986). The agricultural development and modernization of drought regions in China: A comprehensive and economic view. Proceedings of Post-graduate Students Symposium on Enhancing Agricultural Productivities in the Drought Regions of China. The Chinese Agricultural University, 5-10, Beijing, China.